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1. Introduction

The theory of strong interactions, Quantum Chromodynamics (QCD), is a SU(3) gauge

theory with nf flavors of fermionic matter fields in the fundamental representation of the

color group. For sufficiently small nf , QCD displays many interesting non-perturbative

phenomena, which are not captured by the conventional expansion in powers of the coupling

constant. However, if we consider a SU(N) gauge theory, with a generic number of colors

N , in the limit where N becomes large, the perturbative expansion can be reorganized

in powers of 1/N , and the contribution of each diagram can be directly related to its

topology [1, 2]. The leading contribution in this expansion is given by planar diagrams,

and a simple power counting argument suggests that corrections are O(1/N2) in a pure

gauge theory, while the fermionic determinant yields corrections O(nf/N).

The large–N expansion is a powerful tool to explore the strongly interacting regime of

gauge theories, and recent developments in string theory have provided beautiful insights

in our understanding of the planar limit through the gauge-gravity correspondence [3]

(see [4] for an introductory review of recent developments). The lattice formulation of

gauge theories allows one to study the non-perturbative dynamics from first principles by

numerical simulations, and can therefore be used to investigate how the N = ∞ limit is

approached. A number of studies in recent years [5 – 11] have analyzed in detail several

features of pure gauge theories for N ≥ 2, including the spectrum of glueballs, the k-string

tension, and topology, both at zero and finite temperature. A very precocious scaling has

been observed for all observables that have been considered so far, with 1/N2 corrections

being able to accommodate the values of the observables already for N = 3 and in most of

the cases also for N = 2.
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The convergence to the large–N limit for theories with fermions could also be addressed

by dynamical simulations. The contributions of the fermionic determinant should increase

the size of the corrections, as pointed out above. An intermediate step at a lesser compu-

tational cost is the study of properties of mesons and baryons in theories with quenched

fermions. Note that since the fermionic determinant is suppressed in the large–N limit,

simulations in the quenched approximation should converge to the same limit as in the

theory with dynamical fermions, but with corrections O(1/N2).

This paper focuses on the low-lying states of the mesonic spectrum for SU(N) theo-

ries in the quenched approximation and N = 2, 3, 4, 6. By generalizing the lattice Dirac

operator to handle spinors of arbitrary dimension in color space, we compute two-point

functions for Wilson fermions at one value of the lattice spacing and several values of the

bare quark mass. The mass dependence of the spectrum is studied, and extrapolated to

the large–N limit. Our results are consistent with a 1/N2 scaling, and the results for

N = ∞ can be used as an input for analytical approaches that study the meson spectrum

of strongly-interacting gauge theories. Some aspects of the meson spectrum at large N (in

particular, the dependence of the mass of the pion from the quark mass) have also been

investigated in [12].

We stress that this calculation is meant to be exploratory, trying to favor a first overall

physical picture over more formal and technical points. A more detailed calculation is

currently in progress and will be reported elsewhere.

The paper is organized as follows. Section 2 recalls the basic framework that is used for

extracting the mesonic spectrum from field correlators in quenched lattice gauge theories

and summarizes the choice of bare parameters for each value of N . The numerical results

and their analysis are presented in section 3. Finally, we conclude by discussing the large–

N extrapolation in section 4 and its relevance for AdS/QCD studies (see [13] for a review)

in section 5.

As this work was being completed we noticed that similar problems have been investi-

gated in ref. [14]. The preliminary results presented there are obtained on slightly smaller

lattices (in physical units) with a finer lattice spacing. The two sets of data are comple-

mentary and in qualitative agreement. Future calculations will hopefully achieve precise

continuum results for the large–N limit of the mesonic spectrum.

2. Lattice formulation

A Monte Carlo ensemble of gauge fields is generated using the Wilson formulation of pure

SU(N) gauge theory on the lattice, defined by the plaquette action

S = −
β

2N

∑

x,µ>ν

Tr
[

U(x, µ)U(x + µ, ν)U †(x + ν, µ)U †(x, ν) + h.c.
]

, (2.1)

where U(x, µ) ∈ SU(N) are the link variables. The link variables are updated using a

Cabibbo-Marinari algorithm [15], where each SU(2) subgroup of SU(N) is updated in

turn. We have alternated microcanonical and heat-bath steps in a ratio 4:1. We call sweep

the sequence of four microcanonical and one heat-bath update.
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The action of the massive Dirac operator on a generic spinor field φ(x) is:

Dmφ(x) = (D + m)φ(x)

= −
1

2

{

∑

µ

[

(1 − γµ)U(x, µ)φ(x + µ) + (1 + γµ)U(x − µ, µ)†φ(x − µ)
]

−

−(8 + 2m)φ(x)} . (2.2)

The bare mass is related to the hopping parameter used in the actual simulations by

1/(2κ) = 4 + m . (2.3)

The complete set of bare parameters used in our simulations is summarized in table 1. For

this preliminary study we have run simulations for values of N ranging from 2 to 6 at one

value of the lattice spacing only. The values of β have been chosen in such a way that

the lattice spacing is constant across the various N . More in detail, at each N we chose

the critical value of β for the deconfinement phase transition at Nt = 5 [7]. To set the

scale, another physical quantity (like e.g. the string tension) can be used. Since different

quantities have different large–N corrections, a different choice for the scale will affect the

size of the 1/N2 corrections, but not the N = ∞ value. Using the value Tc = 270 MeV, for

the lattice spacing a we get a ≃ 0.145 fm. For our simulations, we used a N3
s × Nt lattice

with the spatial size Ns = 16 (which corresponds to about 2.3 fm) and the temporal size

Nt = 32 (about 4.6 fm in physical units). For the quark masses used in this work, our

calculation should be free from noticeable finite size effects. For the fermion fields we used

periodic boundary conditions in the spatial directions and antiperiodic boundary conditions

in the temporal direction. For the gauge field we used periodic boundary conditions in all

directions.

We have performed a chiral
N β κ

2 2.3715 0.156, 0.155, 0.154, 0.153, 0.152

3 5.8000 0.161, 0.160, 0.159, 0.1575, 0.156

4 10.6370 0.161, 0.160, 0.159, 0.1575, 0.156

6 24.5140 0.161, 0.160, 0.159, 0.1575, 0.156

Table 1: Bare parameters used in our simulations.

extrapolation using data from me-

son correlators at five values of κ

for each N . The choice of val-

ues for κ relies on previous expe-

rience with SU(3) simulations to

yield pseudoscalar meson masses

≥ 450MeV. The same values of

κ have been used for all values of N ≥ 3, while for SU(2) a different choice turned out to

be necessary, since all κ’s but the lowest one were higher than κc. Because of the different

additive renormalization, these values of κ yield different values for the bare PCAC mass

as N is varied.

The mesonic spectrum is extracted from the zero-momentum two-point correlators of

quark bilinears with the quantum numbers required to interpolate between a meson state

and the vacuum. Let Γ1 and Γ2 be two generic products of Dirac γ matrices, a two-point

correlator is defined as

CΓ1,Γ2
(t) =

∑

x

〈

(ūΓ1d)† (t,x) (ūΓ2d) (0)
〉

, (2.4)
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Particle a0 π ρ a1 b1

Bilinear ūd ūγ5d, ūγ0γ5d ūγid, ūγ0γid ūγ5γid ūγiγjd

JPC 0++ 0−+ 1−− 1++ 1+−

Table 2: Bilinear operators for the computation of non-singlet meson masses.

where u and d are the fields corresponding to two different quark flavors, which from now

on we take to be mass degenerate. All possible choices for the non-singlet quark bilinears

and the quantum numbers of the corresponding physical states are summarized in table 2.

Performing the Wick contractions we can rewrite CΓ1,Γ2
(t) in terms of the quark propa-

gator G(x, y) = (Dm)−1(x, y) or, equivalently, of its hermitean version H(x, y) = G(x, y)γ5:

CΓ1,Γ2
(t) = −

∑

x

〈

tr
[

γ0Γ
†
1γ0G(x, 0)Γ2γ5G(x, 0)†γ5

]〉

=

= −
∑

x

〈

tr
[

γ0Γ
†
1γ0H(x, 0)γ5Γ2H(x, 0)γ5

]〉

, (2.5)

(tr indicates the trace over spinor and color indices).

The propagator G(x, 0)AB is obtained by inverting the Dirac operator Dm over point

sources (capital roman letters A,B, . . . are used for collective indices over spin and color):

G(x, 0)AB = (Dm)−1
AC(x, y)δCBδy,0 = (Dm)−1

AC(x, y)η
(B)
C (y) , (2.6)

where the second equality defines the 4N point sources η(B).

The algorithm used for the inversion in eq. (2.6), is a multishift QMR. This enables us

to compute all the quark propagators corresponding to different masses simultaneously. We

use a version of the QMR suitable for γ5-hermitean matrices with even-odd preconditioning

of the Dirac matrix [16]. In the rare cases when the algorithm fails to converge, we continue

the search for a solution using the MINRES algorithm, which is guaranteed to converge, on

the hermitean version of the Dirac operator. For all the inversions we required a relative

precision of 10−5. To this accuracy, and for the parameters given above, the number of

required applications of the Dirac operator to compute the propagator G(x, 0)AB at fixed

values for the hopping parameters κ is found to become independent of N . We found that

the average number of applications of the Dirac matrix required is about 7500, 5000, 5000

for N = 3, 4, 6 respectively (for SU(2) we used different parameters).

From general large–N arguments, we expect the occurrence of exceptional configura-

tions to be suppressed as N increases. This is confirmed by preliminary results reported

in ref. [14]. At the values of the parameters we have simulated, there is no sign of the

presence of exceptional configurations.

Simulations have been performed with a bespoke code, which has been tested against

published results for SU(3) (see [17] for a review of the literature). We have collected 100

configurations for each value of N , separated by 50 Monte Carlo sweeps.
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3. Numerical results

3.1 Extracting masses from correlators

Masses can be extracted from the large–t behavior of CΓ,Γ(t). Inserting the energy eigen-

states in the r.h.s. of eq. (2.4) yields

CΓ,Γ(t) =
∑

i

|ci|
2e−mit , (3.1)

where ci = (1/2mi) 〈0 |(ūΓd) (0)| i〉, Γ is one of the γ matrix products appearing in the

bilinears in table 2, |i〉 is an eigenstate of the Hamiltonian with the same quantum numbers

as the fermion bilinear, and mi is the mass of the |i〉 eigenstate. In the limit t → ∞, the

previous equation becomes

CΓ,Γ(t) =
t→∞

|c0|
2e−m0t , (3.2)

i.e. at large time correlation functions decay in time as a single exponential with a typical

time given by the inverse mass of the lowest-lying state in the spectrum with matching

quantum numbers. The lowest mass in a given channel can then be extracted as

m0 = − lim
t→∞

log CΓ,Γ(t)

t
. (3.3)

Practically, one defines the effective mass m0(t) as

m0(t) = − log
CΓ,Γ(t)

CΓ,Γ(t − 1)
(3.4)

and obtains m0 by fitting m0(t) to a constant at large enough t.

On a finite lattice the exponential in the large-time behavior of the propagator is

replaced by a cosh and an effective mass can be defined as

m0(t) = acosh

(

CΓ,Γ(t + 1) + CΓ,Γ(t − 1)

2CΓ,Γ(t)

)

. (3.5)

Typical examples of correlation functions and effective masses as a function of the separa-

tion between source and sink are shown respectively in figure 1 and figure 2.

We have estimated the errors on the correlators using a jack-knife method, and checked

that the bootstrap method gives similar results. With simple link operators, we have been

able to extract an unambiguous signal for the π and the ρ mesons (to which we limit

our analysis). Other correlators yielded a noisy signal, and we plan to investigate the

possibility of improving the signal-to-noise ratio by more sophisticated measurements. Due

to the small number of data points, often correlated fits proved to be unreliable, as already

observed (see e.g. refs. [18, 19]). Hence, masses have been extracted with uncorrelated fits

and the error estimated with a jack-knife procedure. We have checked that the uncorrelated

fit results coincide with the correlated fit results whenever the correlated fits give reasonable

values for the parameters and the χ2.
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t

1e-06

0.0001

0.01

1
C

Γ,
Γ(t

)

k=0.161
k=0.160
k=0.159
k=0.1575
k=0.156

Figure 1: Correlators for SU(4) and Γ = γ5 at the values of κ shown. The correlators have been

normalized in such a way that at t = 0 their value is 1. The lines joining the data are only guides

for the eyes.

Our results for the various N for the PCAC mass mPCAC, the mass of the pion mπ, and

the mass of the ρ mρ are reported in tables 3–6. The details of our analysis are explained

in the following two subsections.

In order to convert the results expressed in lattice units to masses in physical units,

we note that

am = (aTc)(m/Tc) = m/(5Tc) (3.6)

(the last equality uses the fact that the lattice spacing has been fixed in such a way that

the deconfinement phase transition corresponds to Nt = 5). As a reference scale, we can

use Tc for SU(3), which is approximately 270 MeV.

3.2 Meson masses at finite N

The pion is the would-be Goldstone boson of chiral symmetry breaking. Chiral perturbation

theory at leading order predicts

mπ = A

(

1

κ
−

1

κc

)1/2

. (3.7)
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0 5 10 15 20 25 30
t

0

0.2

0.4

0.6

0.8

1

am
0(t

)

k=0.161
k=0.160
k=0.159
k=0.1575
k=0.156

Figure 2: Effective masses from the correlators in figure 1. The straight lines are fits to the data

at plateau.

κ amPCAC mPCAC (MeV) amπ mπ (MeV) amρ mρ (MeV)

0.152 0.0824(30) 111(4) 0.541(3) 730(4) 0.620(6) 837(8)

0.153 0.0669(28) 90(4) 0.492(4) 664(5) 0.584(7) 788(9)

0.154 0.0522(25) 70(3) 0.441(4) 595(5) 0.547(7) 738(9)

0.155 0.0396(24) 53(3) 0.389(4) 525(5) 0.510(10) 789(13)

0.156 0.0261(22) 35(3) 0.319(7) 430(9) 0.458(17) 618(23)

Table 3: Numerical results for SU(2). Masses in lattice units have been converted to physical units

by noting a = 1/(5Tc).

κ amPCAC mPCAC (MeV) amπ mπ (MeV) amρ mρ (MeV)

0.156 0.1047(24) 141(3) 0.625(2) 844(3) 0.720(3) 972(4)

0.1575 0.0797(21) 108(3) 0.553(2) 747(3) 0.667(4) 900(5)

0.159 0.0574(17) 77(2) 0.476(2) 643(3) 0.616(5) 832(7)

0.160 0.0431(16) 58(2) 0.420(2) 567(3) 0.582(6) 786(8)

0.161 0.0299(14) 40(2) 0.362(3) 489(4) 0.550(7) 743(9)

Table 4: Numerical results for SU(3). Masses in lattice units have been converted to physical units

by noting a = 1/(5Tc).
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κ amPCAC mPCAC (MeV) amπ mπ (MeV) amρ mρ (MeV)

0.156 0.1506(35) 203(5) 0.733(1) 990(1) 0.817(2) 1103(3)

0.1575 0.1234(29) 167(4) 0.667(1) 900(1) 0.766(2) 1034(3)

0.159 0.0981(22) 132(3) 0.598(1) 807(1) 0.714(2) 964(3)

0.160 0.0817(19) 110(3) 0.549(2) 741(3) 0.680(2) 918(3)

0.161 0.0659(17) 89(2) 0.499(2) 674(3) 0.646(3) 872(4)

Table 5: Numerical results for SU(4). Masses in lattice units have been converted to physical units

by noting a = 1/(5Tc).

Figure 3: Effective masses from Cγ5,γ5
at κ = 0.156.

Hence the value of κ corresponding to the chiral limit, κc, can be obtained by fitting the

pion mass according to eq. (3.7). Eq. (3.7) is modified for the quenched theory, where

quenched chiral logs appear. For quenched SU(N) gauge theory we expect

mπ = A

(

1

κ
−

1

κc

)1/[2(1+δ)]

, (3.8)

where δ is positive, O(10−1) for SU(3) and goes like 1/N [20].

The mass of the pion can be extracted by looking at correlators CΓ,Γ in which Γ is

either γ5 or γ0γ5. In the latter case, it was not possible to extract a signal for all κ’s in
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κ amPCAC mPCAC (MeV) amπ mπ (MeV) amρ mρ (MeV)

0.156 0.1789(22) 241(3) 0.814(1) 1099(1) 0.889(2) 1214(3)

0.1575 0.1509(20) 203(3) 0.752(1) 1015(1) 0.838(2) 1131(3)

0.159 0.1248(18) 168(2) 0.687(1) 927(1) 0.786(2) 1061(3)

0.160 0.1078(17) 146(2) 0.6425(9) 867(1) 0.752(2) 1015(3)

0.161 0.0914(15) 123(2) 0.5952(9) 804(1) 0.718(2) 969(3)

Table 6: Numerical results for SU(6). Masses in lattice units have been converted to physical units

by noting a = 1/(5Tc).

N κc A

2 0.15827(12) 1.0583(99)

3 0.16359(28) 1.142(21)

4 0.16556(23) 1.201(14)

6 0.16716(12) 1.2422(69)

Table 7: Fitted values for κc and A at various N .

SU(2). Hence, although in general mass plateau fits of γ0γ5 have a lower χ2, we will mostly

focus on numerical results obtained with Γ = γ5.

As N grows, so does mπ at fixed κ. A plot comparing numerical results for the effective

mass extracted from Cγ5,γ5
is shown in figure 3. A linear fit to the data according to eq. (3.7)

enables us to extract the critical values of κ for the N at which we have simulated. Results

are shown in table 7. The mass obtained from the Cγ0γ5,γ0γ5
correlator yields compatible

results. Higher statistics and a careful study of the systematics are necessary for a more

precise determination of the critical value of κ.

Generally the reduced χ2 of the fits according to eq. (3.7) varies between two and

four. One can check whether this relatively high value of χ2
r is due to the fact that we are

neglecting chiral logarithms. For N ≥ 2, fits according to (3.8) yield a value of χ2
r that is

below one, but δ is found to be negative. This agrees with the findings of [17], where the

negative value is interpreted as a consequence of simulating far from the chiral limit. In

fact, for N = 2, where we have the lightest pion mass, δ is found to be compatible with

zero. As one would have expected, for mπ ≥ 450 MeV there is no sensitivity to the chiral

logarithms [20]. Instead of relying on phenomenological fits like in [17], we acknowledge

the impossibility to determine δ and neglect the chiral logarithms, using the chiral behav-

ior (3.8) to get an estimate for the systematic error associated with this approximation.

For SU(2), the three-parameter fit gives a value of κc that is higher than the fit with δ = 0

by about 1%. Considering that δ ∝ N−1, a conservative but safe estimate for the system-

atic error associated with the chiral logarithms is of the order of a few percent. This is in

agreement with the literature for SU(3) [17]. We will come back on issues associated with

the chiral logarithms in the next subsection.

The mass of the ρ has been extracted from Cγi,γi
, after taking the average over the

– 9 –
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N amχ
ρ B

2 0.3890(75) 0.797(31)

3 0.4683(25) 0.6455(84)

4 0.5018(36) 0.5905(88)

6 0.5238(40) 0.5533(77)

Table 8: Extrapolation of mρ to the chiral limit.

spatial direction i of the correlation functions. Fits in the Cγ0γi,γ0γi
channel also yield

compatible results.

At small quark mass, mρ depends linearly on the quark mass and goes to a finite value

in the chiral limit. Using eq. (3.7), this can be rephrased into the following relationship

between mρ and mπ

mρ = mχ
ρ + Bm2

π , (3.9)

where mχ
ρ is the mass of the ρ meson at the chiral point. Note that the previous equation

is not modified by chiral logarithms [20]. Assuming that eq. (3.9) holds in our case,1 we

can fit mχ
ρ and B at the various values of N from our data. Our results for those quantities

are reported in table 8. The reduced χ2 of the fits (which keep into account both the error

on mρ and the error on mπ) is always less than one.

3.3 PCAC

As noted in the previous subsection, eq. (3.7) only holds for the full theory, while it is

modified at small masses, where quenched chiral logs become important. An alternative

way of defining κc, which is free from these ambiguities, makes use of the partially conserved

axial current (PCAC) relation. In the continuum, the PCAC relation reads

∂µAµ(x) = 2mPCACj(x) , (3.10)

with Aµ(x) = ū(x)γµγ5d(x) and j = ū(x)γ5d(x). The previous equation allows us to

determine mPCAC as

mPCAC =
1

2

〈
∫

d~x(∂0A
0(x))j†(y))〉

〈
∫

d~xj(x)j†(y)〉
, (3.11)

where y is an arbitrary point. On the lattice an effective mass mPCAC(t) can be defined as

mPCAC(t) =
1

4

Cγ0γ5,γ5
(t + 1) − Cγ0γ5,γ5

(t − 1)

Cγ5,γ5
(t)

(3.12)

and once again fitted at plateau. Note that with our choice for the discretized fermions

PCAC holds on the lattice up to terms O(a). In practice, since mPCAC(t) defined through

1More sophisticated dependencies (e.g. the addition of a linear term in mπ to eq. (3.9), which is motivated

by phenomenology) are also supported by our data. In the absence of any evidence against it, we chose to

fit the parameters using the simple chiral functional behavior.

– 10 –
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Figure 4: mPCAC(t) as a function of t for κ = 0.156.

eq. (3.12) is antisymmetric around the point Nt/2, one averages the absolute values at

points t and Nt − t. An example of an effective mass plateau obtained using eq. (3.12) is

given in figure 4.

Since mPCAC = Zm(1/κ−1/κc), we can determine κc as the value for which mPCAC =

0. A linear fit to the data enables us to extract κc. Results for N = 2, 3, 4, 6 are reported

in table 9. Comparing with the similar fits from mπ (table 7), it is immediate to see that

using mPCAC we get values for κc that are systematically lower.2 Although this effect is

below half a percent, it is by far larger than the statistical errors. This discrepancy might

be due to the different chiral behavior of the two definitions of the quark mass for the

quenched theory or be a consequence of the underestimation of the errors due to the use of

uncorrelated fits, as we have discussed above. However, at our value of the lattice spacing

discretization errors also play a relevant part. In order to investigate these issues, we have

analyzed mπ as a function of mPCAC. Our results are reported in figure 5, where mπ is

plotted as a function of mPCAC.

The expected quadratic behavior

m2
π = CmPCAC (3.13)

is not obeyed by our data. To extrapolate to the chiral limit, we need to correct the above

2This should be contrasted with fits that keep into account chiral logarithms, for which we find values

of κc systematically higher.
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Figure 5: m2
π as a function of mPCAC at the various N . The values of mπ at mPCAC = 0 have

been obtained with a linear fit to the data, as discussed in the text.

N κc A

2 0.15792(25) 0.331(15)

3 0.16306(10) 0.372(10)

4 0.16513(15) 0.422(12)

6 0.16657(15) 0.438(11)

Table 9: Extrapolation of κ to the chiral limit using mPCAC.

relationship by allowing for a non-zero value for mπ when mPCAC is zero:

m2
π = CmPCAC + B , (3.14)

where B and C depend on N . B (obtained from a fit according to the previous equation

keeping into account both the errors on mπ and on mPCAC) is roughly of order 10−2 and

independent of N . If the existence of a constant (as a function of N) residual mπ as m → 0

were a sign of the failure of the quenched approximation, we would have expected B to go

to zero as N → ∞. This expectation is not supported by our data. On the other hand,

having fixed the lattice spacing across the gauge groups, any discretization artifact would

be constant in N . Hence, it is likely that this residual mass is (mostly) due to the violation
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of PCAC on the lattice. If this is correct, also the systematic discrepancy between the two

sets of κc should be due to lattice artifacts. In order to settle this issue, a systematic study

at different lattice spacings needs to be performed.

4. Extrapolation to SU(∞)

Using data at finite N , we can estimate the behavior of the lowest-lying meson masses at

N = ∞. Following similar analysis performed in pure gauge [5 – 11], we use predictions

from the large–N expansion to see whether they hold in the non-perturbative regime. In

practice, we take the asymptotic expansion for an observable O in the quenched case [1]

O(N) = O(∞) +
∑

i

αi

N2i
(4.1)

and we check whether a reasonable (as dictated by the number of data) truncation of this

series accommodates our numerical values. In the pure gauge case, a precocious onset

of the large–N behavior has been found for all the observables that have been studied

(which include glueball masses, deconfining temperature and topological susceptibility):

the O(1/N2) correction correctly describes the data down to at least N = 3, often including

also the case N = 2. From a qualitative point of view, it is already clear from what we

have seen so far that the quantities we have investigated have a mild dependence on N .

In this section, we want to study whether this dependence is correctly described by a

large–N -inspired expansion.

κc can be computed in lattice perturbation theory [21]. The result at one loop is in

agreement with the predictions of the large–N limit: this quantity receives a correction

O(1/N2). This motivates the fit

κc(N) = κc(∞) +
a

N2
. (4.2)

For κc obtained via eq. (3.7), we get κc(∞) = 0.1682(1) and a = −0.0398(6), with χ2
r = 0.6.

The quality of the fit is good, and the coefficient of the 1/N2 correction is small, as one

would expect for a series expansion. Similarly to the pure gauge case, we observe an early

onset of the asymptotic behavior, which captures also the SU(2) value. Our data and

the large–N extrapolation are plotted in figure 6. The same extrapolation for the critical

value of κ obtained using the PCAC relation yields κc(∞) = 0.1675(2), a = −0.039(1)

and χ2
r = 1.3. The discrepancy between the values of κc(∞) could be due to lattice

discretization artifacts, as discussed in section 3.3. We take the difference between the

two determinations should be seen as an estimate of the systematic error. The fact that

the angular coefficient a has the same value seems to corroborate this hypothesis. A more

precise determination of κc is beyond the scope of this work.

The slope A in eq. (3.7) can also be extrapolated to the N = ∞ limit, with corrections

that are O(1/N2):

A(N) = A(∞) + a/N2 . (4.3)
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Figure 6: Extrapolation of κc to N = ∞.

For the Cγ5,γ5
results, the fit gives A(∞) = 1.262(8) and a = −0.82(6) with χ2

r = 1.2. This

allows us to write the mass of the π as a function of κ at N = ∞ as

mπ = 1.262(8) (1/κ − 5.945(4))1/2 , (4.4)

where the values of κc obtained from fits to Cγ5,γ5
have been used (using the PCAC value

gives a slightly discrepant result, for the reasons discussed in section 3.3). We plot in

figure 7 the data for the dependence of m2
π as a function of κ, with a fit according to

eq. (3.7). We also plot in the same figure eq. (4.4).

The parameters describing mρ as a function of mπ (eq. (3.9)) are also expected to

follow the asymptotic expansion (4.1). A fit with only the leading 1/N2 correction yields

mχ
ρ (N) = 0.539(3) − 0.62(3)/N2 , χ2

r = 0.008 ; (4.5)

B(N) = 0.5224(8) + 1.10(1)/N2 , χ2
r = 0.7 . (4.6)

The tiny χ2
r for B(∞) is particularly surprising, given the statistical independence of the

measured values of B(N). We see that once again the leading behavior describes very well

the parameters and that the coefficient of the 1/N2 correction is order one.

As a result of this analysis, at N = ∞ we can describe mρ as a function of mπ as

mρ = 0.539(3) + 0.5224(8)m2
π . (4.7)

This relationship, together with the data and the fits at finite N , is plotted in figure 8.
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Figure 7: mπ as a function of 1/κ. The curves through the data are obtained from a fit assuming

the expected leading dependence from chiral perturbation theory. Also shown is the extrapolation

to N = ∞.

5. Discussion and conclusions

In this paper, we have used standard lattice QCD methods for computing correlation

functions to extract the masses of the ρ and π mesons in the large–N limit of SU(N) gauge

theories. The masses in the limiting theory have been obtained with an extrapolation from

the quenched data at N = 2, 3, 4, 6 using the large–N behavior deduced from arguments

inspired by a diagrammatic expansion. We find that the extrapolation works well in its

simplest form, i.e. using only the leading correction to the large–N value. This allows

us to determine the behavior at N = ∞ of the mass of the pion as a function of the

renormalized quark mass and of the mass of the ρ as a function of the mass of the pion

(chiral perturbation theory has also been used as an input). The two central results of this

paper are summarized by the parametrization

mπ(N) =

(

1.262(8) −
0.82(6)

N2

)(

1

κ
− 5.945(4) +

0.0398(6)

N2

)1/2

(5.1)

and

mρ(N) =

(

0.539(3) −
0.62(3)

N2

)

+

(

0.5224(8) +
1.10(1)

N2

)

m2
π(N) . (5.2)
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Figure 8: mρ vs. mπ. Lines through the data have been obtained with a plot inspired by chiral

perturbation theory. Also shown is the extrapolation to N = ∞.

One of the motivations to perform a calculation from first principles for the large–N

limit of SU(N) gauge theories is to compare with predictions obtained in the AdS/CFT

framework. To date, no AdS background has been found that can be considered a good dual

description of non-supersymmetric QCD extrapolated at large–N . Hence, one could use

our calculation to benchmark the proposed AdS ansatz. From this point of view, we notice

a striking agreement with a calculation [22, 13] using the Constable-Myers background [23],

which (after normalizing the mass of the ρ in the chiral limit to our data) finds for the

coefficient of m2
π (see eq. (3.9)) 0.57. This number is in agreement with our calculations

within 5%. However, before we can draw any conclusion from the comparison with the

lattice, an extrapolation of the lattice data to the continuum limit is needed.

Beyond the specific numerical details, our calculation seems to indicate that (a) the

large–N theory is a well defined theory; (b) lattice calculations can be successfully exploited

to compute the parameters of this theory; (c) at least in the quenched theory, to describe

results at any finite N only the first term in the expected power series in 1/N2 is required;

(d) the coefficient of the correction is at most order one, justifying the idea of a power

expansion. All these indications are perfectly in line with what we have already learned

for the SU(N) theory without fermionic matter. Although this can be considered obvious,

since our calculation is quenched, we stress that the N = ∞ limit is also quenched. In
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other words, to describe the limiting theory a quenched calculation suffices. The inclusion

of the full fermion determinant becomes mandatory if one is interested in the actual size

of the finite N corrections. In particular, one expects larger corrections (O(nf/N)) in the

unquenched theory.

As we have stressed several times, one of the main limitations of this calculation is

that our chiral extrapolations are not sensitive to the expected chiral log behavior. We

have conservatively estimated that this approximation produces a 3% systematic error.

This error does not affect our conclusions. Moreover, we note that chiral logarithms do

not modify eq. (5.2). In any case, in order to make more robust estimates, better control

on the chiral extrapolation should be achieved. This requires simulating at smaller pion

masses. It would also be nice to check that the chiral log effects decrease as N increases.

Another source of systematic error in our calculation is the fact that simulations have

been performed at one single lattice spacing. For this reason we regard our results as

exploratory. As discussed in section 3.3, lattice artifacts do seem to play a role, although

they are not big enough to spoil the features of the theory and the way in which the large–

N behavior is approached. Nevertheless, a study closer to the continuum is necessary

to clarify these issues. Work for the extrapolation to the continuum limit is already in

progress. For this extrapolation, the use of an improved fermion action can mitigate the

discretization artifacts, decreasing considerably the required numerical effort. We shall

explore this possibility in the future. As for finite size effects, we have argued in section 2

that with our choice of parameters they can be neglected, but this also ought to be verified

directly.

Aside from technicalities, other features of the large–N theory, like the spectrum in the

flavor singlet channel and masses of heavier mesons, also deserve to be investigated. While

the latter problem can probably be dealt with using improved techniques for computing

correlation functions (e.g. with smeared links replacing straight links and smeared sources

replacing point sources), for the scalar mesons, for which disconnected contributions are

important, different strategies need to be adopted. An adaptation of the techniques exposed

in [24, 25] is in progress. Results will be reported in a future publication.
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